Cycloprothrin is a pyrethroid insecticide. It has a low aqueous solubility and is non-volatile. It may be persistent in soil and water systems depending upon local conditions. It is not expected to leach to groundwater. Cycloprothrin tends to have a low to moderate toxicity to biodiversity depending on species. It has a low oral mammalian toxicity.
Data alerts
The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.
Environmental fate
Ecotoxicity
Human health
Environmental fate High alert: Potential for particle bound transport: High
Used to control rice water weevils and other insects in paddy fields and on other crops
Example pests controlled
Rice water weevils; Vine weevils; Leaf miners
Example applications
Paddy rice; Fruit and vines; Vegetables; Forestry; Cotton
Efficacy & activity
-
Availability status
-
Introduction & key dates
1987, introduced Japan
UK regulatory status
UK COPR regulatory status
Not approved
Date COPR inclusion expires
Not applicable
UK LERAP status
No UK approval for use as a pesticide
EC Regulation 1107/2009 (repealing 91/414)
EC Regulation 1107/2009 status
Not approved
Dossier rapporteur/co-rapporteur
Not applicable
Date EC 1107/2009 inclusion expires
Not applicable
EU Candidate for substitution (CfS)
Not applicable
Listed in EU database
No
Approved for use (✓) under EC 1107/2009 in the following EU Member States
ATAustria
BEBelgium
BGBulgaria
CYCyprus
CZCzech Republic
DEGermany
DKDenmark
EEEstonia
ELGreece
 
 
 
 
 
 
 
 
 
ESSpain
FIFinland
FRFrance
HRCroatia
HUHungary
IEIreland
ITItaly
LTLithuania
LULuxembourg
 
 
 
 
 
 
 
 
 
LVLatvia
MTMalta
NLNetherlands
PLPoland
PTPortugal
RORomania
SESweden
SISlovenia
SKSlovakia
 
 
 
 
 
 
 
 
 
Approved for use (✓) under EC 1107/2009 by Mutual Recognition of Authorisation and/or national regulations in the following EEA countries
ISIceland
NONorway
 
 
 
 
 
 
 
 
 
Additional information
Also used in
-
Chemical structure
Isomerism
Cycloprothrin is a molecule with 2 chiral centres. The commerical product is an isomeric mixture of the 4 stereoisomers. The (1R, alphaR)-isomer demonstrates the greatest insecticidal activity being roughly 5x stronger than the racemic mixture.
Example manufacturers & suppliers of products using this active now or historically
-
Example products using this active
-
Formulation and application details
-
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
0.091
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Low
Solubility - In organic solvents at 20 °C (mg l⁻¹)
-
-
-
Melting point (°C)
25.0
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
-
Boiling point (°C)
140
L1 L = Pesticide manuals and hard copy reference books / other sources 1 = Estimated data with little or no verification
-
Degradation point (°C)
190
L2 L = Pesticide manuals and hard copy reference books / other sources 2 = Unverified data of unknown source
-
Flashpoint (°C)
-
-
-
Octanol-water partition coefficient at pH 7, 20 °C
P
1.55 X 1004
Calculated
-
Log P
4.19
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
High
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
1.26
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
-
Dissociation constant pKa) at 25 °C
Not applicable
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
-
No dissociation
Vapour pressure at 20 °C (mPa)
0.00213
L3 L = Pesticide manuals and hard copy reference books / other sources 3 = Unverified data of known source
Low volatility
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
-
-
-
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
47
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
Moderately persistent
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
Literature studies DT₅₀ range 33 days (flooded sandy clay loam) to 61 days (flooded clay loam)
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
-
-
-
Note
-
Aqueous photolysis DT₅₀ (days) at pH 7
Value
Stable
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
Stable
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
Q2 Q = Miscellaneous data from online sources 2 = Unverified data of unknown source
Slightly mobile
Koc (mL g⁻¹)
3200
Notes and range
Estimated
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
0.83
Calculated
Low leachability
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
1.58 X 10-02
Calculated
-
Note
-
Potential for particle bound transport index
High
Calculated
-
Potential for loss via drain flow
Slightly mobile
Calculated
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242