(Also known as: metazol; mezopur; oxydiazol; bioxone; chlormethazole)
SUMMARY
Data alerts
The following alerts are based on the data in the tables below. An absence of an alert does not imply the substance has no implications for human health, biodiversity or the environment but just that we do not have the data to form a judgement.
Environmental fate
Ecotoxicity
Human health
Environmental fate Moderate alert: Drainflow: Slightly mobile; Potential for particle bound transport: Medium
Example manufacturers & suppliers of products using this active now or historically
Velsicol Chemical Co
Sandoz AG
FBC
Example products using this active
Probe
Tunic
Paxilon
Formulation and application details
Usually supplied as a wettable powder
ENVIRONMENTAL FATE
Property
Value
Source; quality score; and other information
Interpretation
Solubility - In water at 20 °C (mg l⁻¹)
1.5
H4 H = The US ARS pesticide properties database. Dataset is no longer available. 4 = Verified data
Low
Solubility - In organic solvents at 20 °C (mg l⁻¹)
-
-
-
Melting point (°C)
123
Q3 Q = Miscellaneous data from online sources 3 = Unverified data of known source
-
Boiling point (°C)
-
-
-
Degradation point (°C)
-
-
-
Flashpoint (°C)
-
-
-
Octanol-water partition coefficient at pH 7, 20 °C
P
1.66 X 1003
Calculated
-
Log P
3.22
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
High
Fat solubility of residues
Solubility
-
-
-
Data type
-
-
-
Density (g ml⁻¹)
1.60
Q2 Q = Miscellaneous data from online sources 2 = Unverified data of unknown source
-
Dissociation constant pKa) at 25 °C
-
-
-
-
Vapour pressure at 20 °C (mPa)
1.33
H4 H = The US ARS pesticide properties database. Dataset is no longer available. 4 = Verified data
Low volatility. If applied directly to plants or soil, drift is a concern & mitigation is advisable
Henry's law constant at 25 °C (Pa m³ mol⁻¹)
2.31 X 10-01
H4 H = The US ARS pesticide properties database. Dataset is no longer available. 4 = Verified data
Moderately volatile
Volatilisation as max % of applied dose lost
From plant surface
-
-
-
From soil surface
-
-
-
Maximum UV-vis absorption L mol⁻¹ cm⁻¹
-
-
-
Surface tension (mN m⁻¹)
-
-
-
Degradation
Property
Value
Source; quality score; and other information
Interpretation
General biodegradability
-
Soil degradation (days) (aerobic)
DT₅₀ (typical)
14
DW4 DW = Don Wauchope personal database for Pka data: Wauchope, R. D. and Edwards, J. Dissociation constants for pesticide active ingredients: a database and comparison with predicted values. Dataset is no longer available. 4 = Verified data
Non-persistent
DT₅₀ (lab at 20 °C)
-
-
-
DT₅₀ (field)
-
-
-
DT₉₀ (lab at 20 °C)
-
-
-
DT₉₀ (field)
-
-
-
DT₅₀ modelling endpoint
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on plant matrix
Value
-
-
-
Note
-
Dissipation rate RL₅₀ (days) on and in plant matrix
Value
1.0
R3 R = Peer reviewed scientific publications 3 = Unverified data of known source
-
Note
Cotton leaves, undercover, n=1
Aqueous photolysis DT₅₀ (days) at pH 7
Value
-
-
-
Note
-
Aqueous hydrolysis DT₅₀ (days) at 20 °C and pH 7
Value
-
-
-
Note
-
Water-sediment DT₅₀ (days)
-
-
-
Water phase only DT₅₀ (days)
-
-
-
Air degradation
As this parameter is not normally measured directly, a surrogate measure is used: ‘Photochemical oxidative DT₅₀’. Where data is available, this can be found in the Fate Indices section below.
Decay in stored produce DT₅₀
-
Soil adsorption and mobility
Property
Value
Source; quality score; and other information
Interpretation
Linear
Kd (mL g⁻¹)
-
H3 H = The US ARS pesticide properties database. Dataset is no longer available. 3 = Unverified data of known source
Slightly mobile
Koc (mL g⁻¹)
3060
Notes and range
Best available data
Freundlich
Kf (mL g⁻¹)
-
-
-
Kfoc (mL g⁻¹)
-
1/n
-
Notes and range
-
pH sensitivity
-
Fate indices
Property
Value
Source; quality score; and other information
Interpretation
GUS leaching potential index
0.59
Calculated
Low leachability
SCI-GROW groundwater index (μg l⁻¹) for a 1 kg ha⁻¹ or 1 l ha⁻¹ application rate
Value
1.02 X 10-02
Calculated
-
Note
-
Potential for particle bound transport index
Medium
Calculated
-
Potential for loss via drain flow
Slightly mobile
Calculated
-
Photochemical oxidative DT₅₀ (hrs) as indicator of long-range air transport risk
-
-
-
Bio-concentration factor
BCF (l kg⁻¹)
32
Q2 Q = Miscellaneous data from online sources 2 = Unverified data of unknown source
Estimated
Low potential
CT₅₀ (days)
Not available
-
Known metabolites
None
ECOTOXICOLOGY
Terrestrial ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
777
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Rat
Moderate
Mammals - Short term dietary NOEL
(mg kg⁻¹)
-
-
-
(ppm diet)
-
-
Mammals - Chronic 21d NOAEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Birds - Acute LD₅₀ (mg kg⁻¹)
> 2838
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Colinus virginianus
Low
Birds - Short term dietary (LC₅₀/LD₅₀)
-
-
-
Birds - Chronic 21d NOEL (mg kg⁻¹ bw d⁻¹)
-
-
-
Earthworms - Acute 14 day LC₅₀ (mg kg⁻¹)
-
-
-
Earthworms - Chronic NOEC, reproduction (mg kg⁻¹)
-
-
-
Soil micro-organisms
-
-
-
Collembola
Acute LC₅₀ (mg kg⁻¹)
-
-
-
Chronic NOEC (mg kg⁻¹)
-
-
-
Non-target plants
-
-
-
-
-
-
Honeybees (Apis spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Unknown mode acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
362
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Low
Chronic
-
-
-
Bumblebees (Bombus spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
-
Mason bees (Osmia spp.)
Contact acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Oral acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg bee⁻¹)
-
-
-
Other bee species (1)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Other bee species (2)
Acute LD₅₀ (worst case from 24, 48 and 72 hour values - μg insect⁻¹)
-
-
-
Mode of exposure
-
Beneficial insects (Ladybirds)
-
-
-
Beneficial insects (Lacewings)
-
-
-
Beneficial insects (Parasitic wasps)
-
-
-
Beneficial insects (Predatory mites)
-
-
-
Beneficial insects (Ground beetles)
-
-
-
Aquatic ecotoxicology
Property
Value
Source; quality score; and other information
Interpretation
Temperate Freshwater Fish - Acute 96 hour LC₅₀ (mg l⁻¹)
Aquatic plants - Acute 7 day EC₅₀, biomass (mg l⁻¹)
0.7
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Lemna gibba
Moderate
Algae - Acute 72 hour EC₅₀, growth (mg l⁻¹)
0.3
F3 F = U.S. EPA ECOTOX database / U.S. EPA pesticide fate database / Miscellaneous WHO documents / FAO data, IPCS INCHEM data (US EPA Databases Related to Pesticide Risk Assessment ) 3 = Unverified data of known source
Pseudokirchneriella subcapitata 5 day
Moderate
Algae - Chronic 96 hour NOEC, growth (mg l⁻¹)
-
-
-
Mesocosm study data
NOEAEC mg l⁻¹
-
-
-
NOEAEC mg l⁻¹
-
-
-
Marine bivalves – Acute EC₅₀ development (mg l⁻¹)
-
-
-
HUMAN HEALTH AND PROTECTION
General
Property
Value
Source; quality score; and other information
Interpretation
Threshold of Toxicological Concern (Cramer Class)
High (class III)
-
-
Mammals - Acute oral LD₅₀ (mg kg⁻¹)
777
V3 V = ChemID Online Databases; Chemspider; PubChem. (ChemID ) 3 = Unverified data of known source
Lewis, K.A., Tzilivakis, J., Warner, D. and Green, A. (2016) An international database for pesticide risk assessments and management. Human and Ecological Risk Assessment: An International Journal, 22(4), 1050-1064. DOI: 10.1080/10807039.2015.1133242